- Цена: $1.03
Предыдущий опыт борьбы со схемой возбуждения гибкого неона оказался неудачным. 🙁 Что бы я ни делал- трансформатор упорно разогревался и плавил коробку. Горячая штучка. 😉
В итоге заказчица отдала мне всю имеющуюся у нее матчасть со словами «делай что хочешь». В мешке с матчастью обнаружились четыре мотка голубого неона по два метра, один метр оранжевого неона, шнурок-ветвитель, и коробочка для питания шнурков от USB. Я воткнул в коробку все девять метров сразу через ветвитель, и запитался от зарядки. Вот что вышло:
Голубой неон оказался в полтора раза ярче оранжевого, и достаточно красивым. Чем-то напоминает рыбок-неонов. 🙂 Но меня интересовало поведение коробки. Производитель рекомендует ее грузить пятью метрами, на некоторых коробочках я даже видел надпись «3М», а тут- девять метров, почти двухкратное превышение рекомендуемой нагрузки. Тем не менее, коробочка не то что не расплавилась, а даже не раскалилась! Температура ее поверхности была примерно 40 градусов Цельсия, хотя гонял я ее несколько часов. Рука спокойно терпела. Отлично!
Сама коробочка очень маленькая, с ушками для крепления к чему-нибудь, наглухо залита эпоксидкой, что, впрочем, от писка трансформатора внутри совершенно не помогает. Из нее торчат два провода- с разъемом USB и разъемом для подключения неонового шнура.
В общем, проблему возбуждения шнурков можно было считать решенной, однако- коробочку надо подключать к какому-нибудь источнику пропитания, а аккумуляторов на пять вольт не существует. В принципе, коробка спокойно работает от обычного 18650, но яркость шнуров существенно падает. Не вариант. Можно, конечно, просто купить готовую павербанку, но во-первых денег жаль, во-вторых не по-джедайски, в-третьих годная банка крупногабаритна зело, в-четвертых аккумуляторы все равно уже закуплены.
Так что было принято решение делать маленькую павербаночку самостоятельно. Схема была выбрана вот такая:
Это упрощенная схема- я поленился рисовать защиту на DW01, схему можно посмотреть в любом даташите: ссылка
Кроме того, у меня нарисован обычный механический выключатель с фиксацией, на деле же он «электронный»- на TTP223B из предыдущего обзора: ссылка
Теперь немного поясню чего я тут навертел, слева направо.
VT1- это очень простая, очень эффективная, и достаточно дешевая защита от переполюсовки. Дело в том, что у 18650 оба конца почти одинаковые, а я использую держатели аккумуляторов с надежными плоскими пружинными контактами, так что вставить батарейку «наоборот» весьма легко. Защита от переполюсовки уберегает схему от негативных последствий такого инцидента. Причем этот транзистор я ставлю до защиты на DW01, поскольку, хоть сама микросхема переполюсовки и не боится, но сопутствующие ключи (обычно 8205) очень весело выгорают буквально за несколько секунд.
Обратите внимание- транзистор включен «наоборот», это не ошибка. При таком включении во время переполюсовки технологический диод внутри запрется и ток по цепи не потечет. При правильном включении батареи через этот же диод начнет протекать в нагрузку некоторый ток, что создаст на истоке достаточный потенциал для открытия транзистора. В отличие от «традиционного» диода, на этом транзисторе почти ничего не падает, поскольку его сопротивление в открытом состоянии сравнимо с сопротивлением контактов батарейкодержателя. Для конструкций с батарейным питанием это критично.
Далее у меня стоит замечательная микросхемка-супервизор.
Супервизоры изначально разрабатывались для работы с микроконтроллерами, причем выход супервизора предполагалось вешать на ногу сброса, потому выход супервизора так и обзывается- «сброс» (reset). Кроме выхода у моего экземпляра только две ноги- плюс питания и минус. Задача микросхемы- отслеживать значение питающего напряжения, и, если оное ниже допустимого уровня, максимально быстро дергать ногой «сброс». Кроме того, в момент подачи питания, либо после восстановления должного уровня напряжения они еще выдерживают «активный» уровень на ноге «сброс» в течении пары-тройки сотен миллисекунд- для того, чтобы контроллер не начинал работу до окончания переходных процессов в цепях питания. Микросхемы эти бывают разные, но все отличаются экстремально низким потребляемым током (десятки микроампер).
У меня стоит max809 ссылка
Тип выхода у нее- push-pull (бывают супервизоры с открытым стоком на выходе), активный уровень на ноге «сброс»- низкий, active-low (бывают так же с высоким). Пороговый уровень напряжения, при котором микросхема срабатывает, я выбрал 2.63 вольта.
Как это работает «на пальцах»: в момент подачи питания нога «сброс» жестко привязана к минусу в течении пары-тройки сотен миллисекунд, далее, если напряжение питания все еще не превышает пороговый уровень- остается привязанной к минусу. Если превышает- жестко привязывается к плюсу. Пока напряжение на микросхеме выше порогового уровня- нога «сброс» жестко привязана к плюсу. Как только напряжение питания упало ниже порогового- нога «сброс» жестко привязывается к минусу и цикл повторяется.
На выход микросхемы я повесил во-первых индикаторный светодиод, который загорается, если батарейка села, и ключик на N-мосфете VT2, который одновременно отключает всю основную нагрузку. Да, получилось немного нехорошо- мосфет разрывает землю, потому, если кому сие критично- рекомендую применять супервизоры с active-high выходом (например, max810) и P-мосфетом (например, AO3401). Но мне было не критично.
Из-за шустрости этих супервизоров был у меня немного неприятный, но в итоге полезный для общего развития случай… В качестве нагрузки я повесил «для проверки» лампочку накаливая. Подключаю питание- светодиод горит всё время, а не только положенные ему первые 250 миллисекунд, лампочка не загорается вообще. Всю голову сломал, пытаясь понять в чем ошибка. Спасибо мужикам с радиокота- надоумили! В момент подачи питания на лампу сопротивление её холодной нити было очень низким- напряжение на батарейке мгновенно проседало, супервизор эту неприятность радостно отрабатывал- и уходил в сброс еще на 250 миллисекунд. И так циклично. Пробовал шунтировать супервизор большой емкостью- не помогло. Немного подумал- повесил в разрыв положительного провода резистор в пару килоом- проблема полностью решилась! Посему- эту «замедляющую» цепь вешать в таких вариантах применения необходимо, во избежание сюрпризов от нагрузки. Ну, либо не ставьте мосфет и зорко отслеживайте- не горит ли светодиод. 😉
Кроме того, обратите внимание- у меня там аж 12 килоом. Учитывая, что супервизор хоть и мало, но все-таки кушает ток- на этом резисторе падает чуть больше 200 милливольт, таким образом- уровень напряжения питания, при котором срабатывает супервизор, уже не 2.63 вольта, а примерно 2.85 вольта- вполне допустимый минимальный уровень напряжения на литий-полимерном аккумуляторе. Profit! Значение этого резистора лучше всего подбирать под конкретный супервизор. Если такая «подгонка» не нужна (например, у вас супервизор с пороговым уровнем 3 вольта)- килоома-двух будет достаточно, падение на таком сопротивлении будет сравнимо с заводской погрешностью порогового уровня. Если вы используете active-high супервизор и P-мосфет- резистор нужно вешать в разрыв отрицательного провода. Правда, есть один неприятный моментик… Напряжение на конденсаторе C1 нарастает не мгновенно- потому транзистор VT2 в момент подачи питания некоторое непродолжительное время пребывает в открытом состоянии. Кому критично- имейте в виду. Выключатель (механический или «электронный») вполне можно поставить не до супервизора, а после- сам супервизор почти ничего не ест, и батарейку не высадит.
Спрашивается- а на кой я поставил DW01, если супервизор есть? Допустим, батарейка у вас села, а вы этого не заметили, батарейку не вынули, питание не отключили, убрали всю конструкцию в шкаф. Через год достали, а батарея сдохла совсем- потому что горящий светодиод ее недопустимо высадил. DW01 такого не допустит. Да, немного паранойи иногда не повредит. Впрочем, если вы в себе уверены- защиту на DW01 можно не ставить.
Теперь главное- собственно, преобразователь напряжения, подтягивающий уровень напряжения на аккумуляторе до нужных пяти вольт. Я его сделал на широко известной и любимой народом микросхеме типа «клоп SOT-23-6»- mt3608. Ничего необычного- типичный повышающий DC-DC преобразователь в стандартной схеме включения из даташита. ссылка
Обзоров на нее понаписаны целые тома, посему- подробно рассматривать я её не буду, но тем не менее, пару слов скажу.
Почему я проигнорировал ногу Enable, и зачем-то отключаю мосфетом всю цепь? Дело вот в чем… Технически, привязка ноги enable к земле действительно останавливает внутренний генератор и отключает встроенный ключ, но при этом ток совершенно спокойно протекает в нагрузку через индуктор и диод Шоттки. Посему- сия нога, в общем, практически бесполезна.
Кроме того, по личному опыту, сей преобразователь крайне плохо работает на динамические нагрузки. Я пытался запитывать от него маленьких дохленький полуваттный усилитель звука- на низких частотах усилок затыкался. Шунтирование гигантскими емкостями по питанию при этом не помогало. В чем причина- я не стал разбираться, просто сделал пометочку в памяти. Если кто победит- поделитесь опытом. 😉
В остальном- с микросхемы вполне можно снимать до ампера постоянного тока в нагрузке, она почти не греется, работает от нуля разницы между входным и выходным напряжениями, проблем никаких не доставляет, ведет себя крайне достойно во всех отношениях.
Кстати, эти микросхемы продаются на алиэкспрессе в составе готовых модулей, однако- применять настоятельно не рекомендую. Во-первых, у этих модулей крайне поганая разводка, почитать об этом можно, например, вот тут: ссылка Или вот тут: ссылка Кроме того- китайцы упорно лепят на все модули индуктора в 22 мкГн, что является максимально допустимым значением по даташиту. Почему и зачем- я так не понял. Физика учит нас, что чем меньше индуктивность катушки- тем больший ток с нее можно отсосать. Не наоборот! Такой вот «парадокс», да. Так что модули должны неплохо работать на слабых токах в нагрузке, а на больших- уже должны начинаться проблемы, и я не хочу выяснять какие именно. Посему- ставлю рекомендованые производителем 4.7 мкГн и не знаю горя, но индукторы беру помощнее- CDR104. Немного избыточные даже…
Учитывая, что преобразователь работает на частоте 1.2 МГц- на вход и выход производитель рекомендует ставить емкости от 22 микрофарад с как можно более низким ESR, лучше всего- керамику. Я повесил и керамику, и на всякий случай электролитик- просто потому что валялся лишний. Имхо еще лучше вешать туда полимерные конденсаторы, обладающие экстремально низкими ESR, но они пока жутко дорогущие. 🙁 А вот зеленый индикаторный светодиод можно вообще не вешать- он несколько лишних миллиампер жрет. Но я человек не злой- мне не жалко. 🙂
Вся павербанка у меня легко уместилась на пузе батарейкодержателя, за исключением кнопки включения и разъема USB. К черным стоечкам я уже приклеил защитную полоску прозрачного пластика, сделанную из линейки. Вот как-то так:
Комнатные испытания показали, что от одной свежезаряженной банки Liitokala емкостью 3400 мА/ч девять метров светящегося шнура проработали ровно 7 часов 15 минут, что имхо отличный результат.
Кстати, обнаружился интересный эффект: когда батарея севшая- шнуры начинают мигать. Происходит это вот почему: напряжение на батарее падает ниже 2.8 вольт- супервизор отрубает нагрузку. Через какое-то время напряжение на банке немного восстанавливается- супервизор включает нагрузку обратно, но не раньше чем через положенные 250 миллисекунд, из-за этого возникает «предупреждающее мигание».
При этом у меня ничего не расплавилось и не подохло. Посему, вопрос питания гибкого неона можно считать закрытым. Бонусом- от павербанки можно подзарядить мобильник в лесу, так что- всё к лучшему. 🙂